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Despite their anatomical and functional distinctions, there is growing evidence that the dorsal and ventral visual pathways interact
to support object recognition. However, the exact nature of these interactions remains poorly understood. Is the presence of identity-
relevant object information in the dorsal pathway simply a byproduct of ventral input? Or, might the dorsal pathway be a source of
input to the ventral pathway for object recognition? In the current study, we used high-density EEG—a technique with high temporal
precision and spatial resolution sufficient to distinguish parietal and temporal lobes—to characterise the dynamics of dorsal and ventral
pathways during object viewing. Using multivariate analyses, we found that category decoding in the dorsal pathway preceded that in
the ventral pathway. Importantly, the dorsal pathway predicted the multivariate responses of the ventral pathway in a time-dependent
manner, rather than the other way around. Together, these findings suggest that the dorsal pathway is a critical source of input to the

ventral pathway for object recognition.
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Introduction

The primate visual system has historically been segregated into
at least two independent visual pathways. The ventral visual
pathway, which projects along the inferior temporal cortex (IT)
and is involved primarily in visual object recognition, and the
dorsal visual pathway, which projects along the parietal cortex
and is involved primarily in visuospatial processing in the service
of visually guided action. Despite their anatomical and func-
tional differences, accumulating evidence suggests that the dorsal
pathway may contribute to object recognition processes through
its interactions with the ventral pathway. Yet, few studies have
examined the precise temporal dynamics of object processing in
dorsal and ventral pathways, leaving the directionality of these
interactions unclear.

The dorsal pathway exhibits many functional properties that
are crucial for object recognition. For instance, fMRI studies
have shown that, like the ventral pathway, the dorsal pathway
exhibited greater univariate activation to intact object images
compared with scrambled object images, even when the objects
did not afford action (Grill-Spector et al. 1998; Freud et al.
2017a). Moreover, the multivariate responses of dorsal regions
were sufficient to decode an object’s category across variations
in the object’s image-level properties and across variations
among a category's exemplars (Bracci and Op de Beeck 2016;
Vaziri-Pashkam et al. 2019). Indeed, object classification accuracy
in dorsal regions matched, and sometimes surpassed, the
classification accuracy of ventral object regions (Jeong and Xu
2016; Ayzenberg and Behrmann 2022b). Other studies have shown
that applying transcranial magnetic stimulation (TMS) over the
dorsal pathway impaired aspects of object perception, such as

configural processing and global shape perception (Romei et al.
2011; Zaretskaya et al. 2013; Zachariou et al. 2017). And, indeed,
many patient studies have shown that damage to the dorsal
pathway can impair the perception of global shape (Karnath et al.
2000; Dalrymple et al. 2007; Riddoch et al. 2008; Thomas et al.
2012). Thus, the dorsal pathway not only represents information
crucial for action, but also represents identity-relevant object
properties crucial for recognition (Freud et al. 2016; Ayzenberg
and Behrmann 2022a).

There is also a high degree of anatomical and functional con-
nectivity between dorsal and ventral pathways (Baizer et al. 1993;
Webster et al. 1994; Kravitz et al. 2013; Takemura et al. 2016),
suggesting that these pathways interact. However, the critical
question regards the directionality of these interactions. Some
studies have proposed that the ventral pathway transmits object
information to the dorsal pathway to specify the action affor-
dances of objects (Almeida et al. 2013; Garcea and Mahon 2014; Xu
2018). Indeed, regions of the left parietal cortex (in right-handed
participants) exhibited preferential functional connectivity with
the ventral pathway when participants viewed images of tools—
a category with a high degree of affordance information (Garcea
and Mahon 2012; Chen et al. 2017). On this view, the dorsal
pathway does not contribute to object recognition per se but
represents identity-relevant object properties as a byproduct of
ventral input.

An alternative proposal, however, is that the dorsal pathway
computes identity-relevant properties independently of the
ventral pathway and may even propagate object information
to the ventral pathway to support recognition (Ayzenberg
and Behrmann 2022a). Consistent with this proposal,
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electrophysiological recordings from both patients and monkeys
have revealed that object information can be decoded in the
dorsal pathway prior to that in the ventral pathway (Janssen et al.
2008; Regev et al. 2018). Moreover, temporary inactivation of the
posterior parietal cortex (PPC) in monkeys reduces activation in
ventral regions during object perception tasks (Van Dromme et al.
2016). Other research has shown that patients with extensive
ventral damage nevertheless showed preserved responses to
object shape in PPC, as well as an ability to recognise objects
in certain contexts (Riddoch and Humphreys 1987; Riddoch et al.
2008; Freud et al. 2017b; Holler et al. 2019), suggesting that dorsal
representations of shape are independent of the ventral pathway.

In a recent paper, Ayzenberg and Behrmann (2022b) used fMRI
to characterise the functional contributions of the dorsal pathway
to the ventral pathway during object recognition. They found that
object decoding performance in shape-selective regions of PPC
was comparable with decoding performance in the lateral occip-
ital cortex (LO)—a ventral region crucial for object recognition
(Grill-Spector et al. 2001; Pitcher et al. 2009; Behrmann et al. 2016).
Additionally, they found that the multivariate response of the
dorsal pathway mediated representations of shape in the ventral
pathway, with effective connectivity analyses revealing that PPC
signals predict the time course of LO activity, rather than the
other way around. However, because fMRI has a low temporal
resolution, it is not possible to draw strong conclusions about the
directionality of these interactions.

In the current study, we measure the temporal dynamics of
the dorsal and ventral pathways using high-density electroen-
cephalography (HD-EEG)—a neuroimaging method with millisec-
ond precision and sufficient spatial resolution to localise dorsal
and ventral pathways. Specifically, we selected channels of inter-
est anatomically, corresponding to PPC and LO, and examined the
directionality of their interactions. Although a limitation of EEG
is its low spatial resolution, many studies have shown that the
spatial resolution of HD-EEG is sufficient to dissociate lobes of
the brain (Ferree et al. 2001; Koessler et al. 2009; Hedrich et al.
2017). Indeed, concurrent fMRI and EEG recording have shown
that HD-EEG can be used to localise retinotopic responses in
visual cortex to within 8 mm of the fMRI responses (Im et al. 2007).
Moreover, because PPC and LO are situated on the surface of the
brain, recordings from these regions are less impacted by noise, or
other perturbations associated with distance, than deeper regions
(Krishnaswamy et al. 2017). Thus, although the spatial resolution
of HD-EEG is coarse when compared with other neuroimaging
methods, it is sufficient to dissociate between neural activity in
dorsal and ventral pathways.

We used an existing HD-EEG dataset in which participants were
shown four categories of objects: tools, non-tools, insects and
birds (see Fig. 1; Gurariy et al. 2022). In their initial study, Gurariy
et al. (2022) used multivariate analyses and source localisation
to demonstrate comparable decoding of object shape and object
category information in both dorsal and ventral pathways. How-
ever, they did not examine the temporal interactions between
the pathways. Here, we characterised the object classification
accuracy of each region across time and tested whether object
category information could be decoded earlier in dorsal or in
ventral areas. Moreover, we used Granger causality and time
generalisation analyses to examine whether the dorsal pathway
predicted the time course of responses in the ventral pathway,
or vice versa. To foreshadow our results, we found that category
decoding in the dorsal pathway preceded the ventral pathway,
and that the dorsal pathway predicted the response of the ventral
pathway in a time-dependent manner. Together, these findings
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Fig. 1. Stimuli presented to participants. Stimuli were comprised of four
categories: Tools, non-tools, insects and birds. See Gurariy et al. (2022)
for full details about stimulus design and presentation.

suggest that the dorsal pathway is a critical source of input to
the ventral pathway for object recognition.

Methods

Participants

For a full description of the methods and procedures, see Gurariy
etal. (2022). In sum, 20 right-handed neurotypical adults (12 men,
ages 18-38 years) with normal or corrected-to-normal visual acu-
ity participated in the study. Each participant provided informed
written consent. All protocols received approval by the Insti-
tutional Review Board at the University of Nevada, Reno. We
received fully de-identified data from the original investigators.

Apparatus

Stimuli were displayed on a Mitsubishi Diamond Pro270 CRT mon-
itor (20 in., 1024 x 768) with a 120-Hz refresh rate, running via a
2.6-Mhz Mac Mini and presented using the PsychToolbox (Kleiner
et al. 2007; Brainard, 1997; Pelli, 1997) for MATLAB (MathWorks
Inc., 2007). Participants were seated 57 cm from the screen.

EEG data acquisition

The EEG signal was continuously recorded using a 256-channel
HydroCel Geodesic Sensor Net via an EGI Net Amps Bio 300 ampli-
fier (Electrical Geodesics Inc.) sampling at 1000 Hz. The digital
data were recorded using Netstation 5.0(1) software. Impedance
values were kept at or below 100 £2. A photodiode was used to
validate frame-accurate timing of stimulus presentation.

EEG preprocessing

EEG data were preprocessed using the EEG Lab Toolbox (Delorme
and Makeig 2004) and custom scripts written in MATLAB. Data
were referenced from Cz to the algebraic average of all electrodes.
A high bandpass of 0.1 Hz was applied to remove slow drift
and electrical noise. Data were then downsampled from 1000
to 250 Hz. Next, a low bandpass filter of 40 Hz was applied.
Bad EEG channels were rejected using the “pop_rejchan” and
“pop_clean_rawdata” functions in EEG Lab by identifying channels
with extended flat line recordings and minimal channel corre-
lation using joint probability of the recorded electrode. Indepen-
dent component analysis (ICA) was used to identify and remove



residual blink artifacts. Across participants, on average, 15.2% of
channels were removed.

The filtered time series was then segmented into 550-ms
epochs (a 50-ms pre-stimulus baseline followed by 500 ms of
electrophysiological data after stimulus onset). Event segmen-
tation was performed using trigger markers that were sent
to the acquisition computer at the onset of each trial. The
temporal offset that existed between the physical presentation
of the stimulus and the registration of the stimulus marker
in the acquisition computer was measured using a photodiode
and corrected for during trial segmentation. Following event
segmentation, artifacts were detected using EEG Lab functions
(pop_eegthresh), which rejects artifacts using thresholding. The
EEG epochs described above for each participant were grouped
into four conditions: tools, non-tools, insects and birds.

Channel selection

Anatomically defined channels of interest were selected a priori
in regions corresponding to PPC and LO using well-established
cortical projections of EEG sensors (Luu and Ferree 2005; Koessler
et al. 2009). Specifically, channels were identified by first overlay-
ing PPC (IPSO and IPS1; Wang et al. 2014) and LO (Julian et al. 2012)
probabilistic masks on a standard MNI brain with the Julich Atlas,
and determining the corresponding Brodmann areas for each
(see Fig. 2A). Channels corresponding to PPC (BA 7 and superior
19) and LO (BA 18 and inferior 19) were then identified using
a template brain with electrodes arranged in the 10-10 system
(Koessler et al. 2009). PPC electrodes consisted of 14 channels
in the left hemisphere located approximately between P3 and
Pz locations and 14 channels in the right hemisphere located
approximately between Pz and P4 locations (see Fig. 2B). LO elec-
trodes consisted of 14 channels in the left hemisphere located
approximately between the T5 and O1 locations, and 14 channels
in the right hemisphere located approximately between T6 and 02
locations (see Fig. 2B). For comparison, we additionally selected
electrodes corresponding to occipital cortex, which consisted of
14 channels total, approximately located between O1 and O2
locations. We also selected electrodes corresponding to frontal
cortex, which consisted of 14 channels in the left hemisphere
located approximately between F7 and Fz and 14 channels in
the right hemisphere located approximately between Fz and F8
locations.

To further validate our channel selection decisions, we tested
whether our anatomically defined occipital, dorsal, ventral and
frontal channels are functionally distinct. Given the diffuse
nature of the EEG signal, the goal of this analysis is to test whether
the functional profile of each region was unduly affected by
signals from elsewhere in the brain. Principal component analysis
(PCA) was conducted on all channels for each participant, and
we retained components that explained 95% of the variance for
each participant—resulting in a unique number of components
for each participant. Then, we tested whether occipital, dorsal,
ventral and frontal channels load onto distinct components.
Specifically, we calculated the Euclidean distance between the
component loadings for each channel with every other channel
in a pairwise fashion, providing a metric of functional similarity
between all channels. Hierarchical cluster analyses of the mean
participant similarity matrix revealed that our anatomically
selected occipital, dorsal, ventral and frontal channels are more
similar to one another than to the other regions (Fig. 2C). Thus,
as consistent with previous work (Koessler et al. 2009), HD-EEG
provides sufficient spatial resolution to decode signals from
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distinct lobes of the brain with minimal impact from other neural
sources.

Finally, to ensure that any differences between regions could
not be accounted for by different levels of noise, we also computed
the signal-to-noise ratio (SNR) for each region. SNR was computed
using two methods. We first computed the overall SNR for the
entire time course by dividing the mean signal by the standard
deviation of the time course. This analysis method revealed no
differences in SNR between regions (Ps > 0.090; occipital: 6.26,
dorsal: 4.85, ventral: 5.59, frontal: 6.19). In the second approach,
we computed the SNR by dividing the mean signal during the
stimulus period by the standard deviation of the pre-stimulus
baseline period. As was true of the first approach, this analysis
revealed no significant differences between regions (Ps> 0.335;
occipital: 0.65, dorsal: 0.57, ventral: 0.65, frontal: 0.70). Thus,
the equivalence of the SNR between regions indicates that any
differences we obtain are not a function of signal strength in any
lobe or of differential noise.

Stimuli and procedure

The stimuli comprised four categories, each consisting of five
exemplars (resulting in 20 unique images; see Fig. 1). The cat-
egories included two inanimate classes: tools, here defined as
objects that elicit a motor program specific to the object’s func-
tion (e.g. twisting for the corkscrew), as well as non-tool objects,
here defined as objects that are manipulable, but do not elicit
a motor program specific to the object’s function (e.g. all non-
tools elicit grasping) (Garcea and Mahon 2012). There were also
two animate classes, birds and insects. All stimuli were processed
using the SHINE toolbox (Willenbockel et al. 2010) to control low-
level differences in luminance and spatial frequency.

On each trial, an image was presented at the center of the
screen (15° x 15°) for 300 ms followed by an interstimulus interval
(ISI) lasting between 800 and 1200 ms. Each of the 20 exemplars
that made up the four categories was presented 84 times resulting
in 420 trials per category and 1680 trials in total. The order
of presentation was randomised. To maintain their attention,
participants performed an orthogonal task wherein they pressed
the space bar if an image appeared at a reduced luminance
(50% reduction), and this occurred in 5% of the trials. Reduced
luminance trials were excluded from all subsequent analysis.

Data analysis
Category decoding

For each participant, region and timepoint, a support vector
machine classifier was trained on the multivariate pattern
for three exemplars from each category, and then required to
predict the category of the two left out exemplars (100-fold
cross-validation). Above chance (0.25) decoding accuracy for
each timepoint was determined using a bootstrap procedure,
wherein participants’ decoding data was resampled 10 000 times
(with replacement) and 95% bootstrap confidence intervals
were constructed around the classification accuracy for each
timepoint. Qualitatively similar results were found when using
different classifiers (e.g. Naive Bayes) or statistical tests (e.g. one-
sample t-test comparisons to chance).

Effective connectivity

For each participant and region, the channel x time (stimulus
onset to offset) response for each object was concatenated with
one another to form one continuous timeseries. A single null value
was inserted between every object’s timeseries to prevent the
prediction of temporally discontinuous timepoints. Multivariate
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Fig. 2. Anatomical regions of interest and their corresponding HD-EEG channels. (A) Probabilistic parcels for (red) PPC and (blue) LO projected onto an
inflated standard brain (right hemisphere). (B) A diagram illustrating the channels of interest corresponding anatomically to (red) PPC and (blue) LO, as
well as (green) occipital and (yellow) frontal control region. (C) A cluster map illustrating the similarity between channels-of-interest. Hierarchical
clustering of EEG channels revealed that dorsal channels were functionally more similar to one another than to other channels-of-interest; likewise,
ventral channels were functionally more similar to one another than other channels-of-interest.

Granger causality analyses (Barrett et al. 2010; Barnett and Seth
2014) were then conducted twice, once with the dorsal pathway
channels as the predictor and once with the ventral pathway
channels as the predictor. Following prior work (Roebroeck et al.
2005), the effective connectivity between the areas was calculated
by subtracting the dorsal — ventral F statistic from the ventral —
dorsal F statistic. Multivariate Granger causality was tested with a
maximum lag of 50 ms, with the best-fitting lag for each direction
used to compare dorsal and ventral pathways. Following previous
work, a group analysis was conducted using a Wilcoxon signed-
rank test comparing F-difference values to 0.

Time generalised representational similarity analyses

For each participant and region, a 20 x 20 representational dis-
similarity matrix (RDM) was created for every time point by com-
puting the Cosine similarity between the multivariate channel
responses for one object with every other object in a pairwise

fashion. RDMs were then averaged across participants separately
for PPC and LO. Then, for every timepoint, the upper triangle
of the resulting matrix (including the diagonal) for the dorsal
pathway was correlated with the RDM of every timepoint of
ventral pathway. To test whether the dorsal pathway predicted
the ventral pathway, or the other way around, we subtracted
the correlations below the diagonal (dorsal — ventral) from the
correlations above the diagonal (ventral — dorsal). Specifically,
for each participant, we subtracted each timepoint from the
timepoint with the equivalent coordinates mirrored along the
diagonal. For example, the timepoint with coordinates 100 ms in
the dorsal pathway (y-axis) and 120 ms in the ventral pathway
(x-axis) was subtracted from the time point with coordinates
120 ms in the ventral pathway and 100 ms in the dorsal pathway.
A significant positive difference from zero would indicate that the
dorsal pathway better predicts future times points of the ventral
pathway, rather than the other way around. The mean difference
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Fig. 3. Results of the decoding analyses. (A) Time course of category decoding for (red) dorsal and (blue) ventral channels. Classification accuracy is
plotted along the y-axis as a function of time (ms). Data are plotted from the pre- to post-stimulus period (—50 to 500 ms). Shaded regions indicate the
standard error of the mean (SE). (B) A histogram illustrating the earliest onset of above chance classification for 10 000 resamples for (red) dorsal and
(blue) ventral channels. The y-axis illustrates proportion with which each time point exhibited above chance classification accuracy. Data are plotted

for the stimulus period (0-300 ms).

across all correlation subtractions was taken for each participant,
and submitted to a one-sample t-test comparison to chance (0).

Results
The time course of object classification

We first examined the time course of identity-relevant object
information in dorsal and ventral pathways. Specifically, we
tested when the multivariate pattern in each area could be used
to decode the objects’ categories (see Fig. 3). We found that the
peak decoding accuracy was comparable in both pathways, with
the peak accuracy at 210 ms in the dorsal pathway (35.2%) and
246 ms in ventral pathways (34.9%). But the critical question
has to do with the temporal signature, namely, in which the
cortical area was object information decoded earlier in time? An
analysis of the first onset of significant decoding found that object
category information could be decoded above chance earlier
from the dorsal pathway (28.5%) at 66 ms, whereas category
information was decoded from the ventral pathway (29.1%) at
94 ms, a difference of 28 ms (see Fig. 3A).

We next tested whether these timing differences between dor-
sal and ventral pathways were statistically consistent. Participant
data from dorsal and ventral pathways were resampled 10 000
times (with replacement). On each resample, a one-sided, one-
sample t-test was conducted for every timepoint of participants’
data, and the first timepoint with above chance decoding was
recorded. To minimise spuriously significant timepoints, only
those timepoints with significant decoding for at least two
consecutive timepoints were recorded (results were qualitatively
similar without this step).

Across resamples of the data, the decoding in the dorsal path-
way occurred at a median time of 66 ms, whereas decoding
in the ventral pathway occurred at a median time of 94 ms,
a difference of 28 ms. A Binomial comparison to chance (0.50)
revealed that the dorsal pathway preceded the ventral pathway
in 70.1% of resamples, significantly more often than would be
predicted by chance (0.50; P<0.001; Binomial test; see Fig. 3B).
Altogether, these results show that identity-relevant object infor-
mation is present in the dorsal pathway prior to the ventral
pathway.
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For comparison, we also examined the presence of identity-
relevant object information in occipital cortex and frontal cortex.
Occipital cortex was chosen because it is considered the earliest
stage of visual processing in the cortex and has direct connec-
tions to dorsal and ventral visual pathways. Hypothetically, then,
identity-relevant information in the dorsal pathway may reflect
propagation from occipital cortex, rather than a computation of
the dorsal pathway per se. Frontal cortex was also examined
because it has been suggested to be a source of feedback to
the ventral pathway (Bar et al. 2006; Kar and DiCarlo 2021) and,
hypothetically, could even be the source of identity information in
the dorsal pathway.

These analyses revealed above chance decoding at 66 ms in
occipital cortex (same time as dorsal) and 110 ms in frontal
cortex (after dorsal and ventral pathways). Resamples of the data
revealed a median decoding time of 70 ms in occipital cortex
and 106 ms in frontal cortex. Binomial comparisons to the dorsal
pathway of these distributions revealed that decoding in the
dorsal pathway preceded both occipital cortex (58.1% of resam-
ples; P <0.001) and frontal cortex (77.7% of resamples; P < 0.001).
In contrast, decoding in the ventral pathway was preceded by
occipital cortex (58.1% of resamples; P <0.001), and the ventral
pathway preceded frontal cortex (72.3% of resamples; P < 0.001).

Control analyses

We found that category decoding in the dorsal pathway pre-
ceded the ventral pathway However, given the relatively small
differences in timing between areas (28 ms), it is possible that
these differences are spurious and reflect the idiosyncrasies of
the stimulus categories, the channels selected, or the influence
of signals outside our regions of interest. We conducted several
control analyses to address these concerns and investigate the
consistency of identity-relevant information in dorsal and ventral
pathways.

We first tested whether differences between dorsal and ventral
pathways were driven by the inclusion of the tool category. It
is well known that the dorsal pathway is particularly sensitive
to objects that afford action, such as tools (Chao and Martin
2000; Almeida et al. 2010) and, indeed, prior HD-EEG work has
shown better decoding for tools than other categories in the
dorsal pathway (Gurariy et al. 2022). Thus, it is possible that the
differences in timing we observe are driven solely by the inclusion
of tools. To test this possibility, we repeated our decoding analysis
in the absence of the tool category (non-tools vs. birds vs. insects;
chance=0.33). Consistent with the results above, this analysis
revealed that decoding again occurred earlier in the dorsal path-
way (38.5%) at 50 ms than the ventral pathway (36.3%) at 98 ms,
a difference of 48 ms.

We next tested whether any of the other categories could
explain the timing differences between dorsal and ventral path-
ways. To this end, we conducted decoding analyses on dorsal and
ventral pathways in each participant after iteratively removing
each category one at a time (e.g. decoding with birds or insects or
tools or non-tools removed; chance =0.33). To provide an overall
measure of decoding consistency across all object iterations, we
resampled these data 1000 (with replacement) and calculated the
onset of first decoding on every resample. Across the aggregate of
all resamples of the data (i.e. every iteration of stimulus categories
for participants), we found that median category decoding in the
dorsal pathway (58 ms) preceded the ventral pathway (86 ms) by
28 ms. A Binomial comparison of the distributions (0.50) revealed
that this difference was statistically significant (P <0.001), with
dorsal preceding ventral in 66.2% of resamples. Together, these

analyses suggest that our results are not driven by tool cate-
gory specifically, nor variations in which stimulus categories are
included in the decoding.

The next possibility we tested is whether differences between
dorsal and ventral pathways are driven by the specific channels-
of-interest we selected for each region. If this possibility is true,
then slight differences to the channel selection criteria may alter
the results. To test this possibility, we randomly resampled (with
replacement) the channels-of-interest for each participant within
each region 1000 times and repeated our primary decoding anal-
ysis on every resample. This analysis revealed that, across resam-
ples of the channels, decoding in the dorsal pathway preceded the
ventral pathway (medians=66 ms vs. 98 ms), by a difference of
32 ms. A Binomial comparison of the distributions (0.50) revealed
that this difference was statistically significant (P <0.001), with
dorsal preceding ventral in 89.3% of resamples. Thus, our decod-
ing results are consistent across variations in the specific chan-
nels selected.

Finally, we examined whether our decoding results could
be explained by signals outside dorsal and ventral pathways.
Although our hierarchical cluster analyses showed that dorsal
and ventral channels were functionally distinct from other
regions (see Methods), the signals we measured over dorsal and
ventral pathways are likely influenced by channels elsewhere
in the brain. To test this possibility, we repeated our decoding
analyses after controlling for the response of all channels outside
of our two key regions of interest.

To this end, we first conducted PCA on the timeseries response
for all the channels of the brain for every participant, while
excluding dorsal and ventral pathways, and retained components
that explain 95% of the variance. These components provide a
multivariate summary of the functional responses of all channels
outside of the dorsal and ventral electrodes. Next, for each par-
ticipant, we regressed each channel corresponding to the dorsal
and ventral pathway by the principal components from the rest
of the brain. Finally, we repeated our decoding analyses using the
residual responses of the dorsal and ventral channels. This anal-
ysis revealed significant decoding in the dorsal pathway at 50 ms,
and significant decoding in the ventral pathway at 78 ms, a 28-
ms difference. Thus, although our channels-of-interest were likely
influenced by sources outside dorsal and ventral pathways, these
external sources do not explain the differences in timing between
dorsal and ventral pathways. Altogether, these findings suggest
that our decoding results cannot be explained by variations in
the stimulus categories, selected channels nor sources outside our
regions of interest. Instead, our findings are robust across all these
variations.

Effective connectivity analyses

The results above revealed that object classification in the dorsal
pathway preceded that of the ventral pathway. However, it is
unclear whether the dorsal pathway is also a source of input to
the ventral pathway. Indeed, it is possible that object processing
simply occurs in parallel in dorsal and ventral pathways with a
temporal advantage for dorsal over ventral but with little, if any,
interaction.

To test whether the dorsal pathway is a potential source of
input to the ventral pathway, we conducted hypothesis-driven
multivariate Granger causality analyses (Barrett et al. 2010;
Barnett and Seth 2014). The premise underlying Granger causality
analyses is as follows. The dorsal pathway can be said to
predict the response of ventral pathway if incorporating the past
multivariate responses of dorsal pathway (i.e. t — 1) improves



the prediction of current multivariate responses of the ventral
pathway over above ventral’s own past responses.

Granger causality analyses were conducted in both directions
(dorsal — ventral and ventral — dorsal), with the resulting
F statistics subtracted from one another. A Wilcoxon signed-
rank one-sample t-tests comparisons with O revealed significant
effective connectivity from the dorsal to the ventral pathway,
W(19)=160, P=0.020, d=0.52. This finding suggests that the
multivariate time course of the dorsal pathway predicts the
ventral pathway, rather than the other way around.

For comparison, we also examined the interactions between
occipital and frontal cortices with dorsal and ventral pathways.
These analyses revealed that occipital cortex was a significant
predictor of the ventral pathway, W(19) =181,P=0.002,d=0.72, but
not the dorsal pathway (P=0.378). We also found that the dorsal
pathway was a significant predictor of frontal cortex, W(19) = 160,
P=0.005,d=0.65, whereas the ventral pathway was not (P =0.249).

Time generalisation analyses

If the dorsal pathway precedes and predicts future responses
of the ventral pathway, then the strongest correlation between
dorsal and ventral pathways should be between the present time-
point of the dorsal pathway with future timepoints of the ventral
pathway. To test this prediction, we conducted time generalised
representational similarity analyses (Kriegeskorte et al. 2008; King
and Dehaene 2014).

See Fig. 4A for the time generalisation matrix. Across partici-
pants, correlations were stronger when the dorsal pathway was
correlated with future timepoints of the ventral pathway than
when the ventral pathway was correlated with future timepoints
of the dorsal pathway, t(19)=2.83, P=0.011, d=0.63.

To further visualise the patterns of interactions between dorsal
and ventral pathways, we rank ordered the correlations from
strongest to weakest and labeled each according to whether they
reflected dorsal — ventral correlations, ventral — dorsal correla-
tions or correlations along the diagonal of the matrix (see Fig. 4B).
This visualisation revealed that the strongest correlations were
overwhelmingly those in which dorsal signals predicted ventral
signals. Indeed, 9 of the 10 strongest correlations are those in
which the dorsal pathway predicted ventral pathway, with the
single remaining value reflecting a correlation along the diagonal
of the matrix. The mean prediction delay between dorsal and
ventral pathways in the top 10 correlations was 8.8 ms.

To characterise this pattern quantitatively, we conducted a
rolling binomial analysis in increments of 50, where we tested
whether dorsal — ventral correlations comprise a larger pro-
portion of the correlations than would be predicted by chance
(0.49). This analysis revealed that dorsal — ventral correlations
comprised the majority of the top correlations up to the first
500 indexed correlations (55.2%, P=0.006). At its peak, dorsal —
ventral correlations comprised 66% of the top 300 correlations
(P <0.001), with a mean prediction delay of 34.3 ms. Altogether,
these results suggest that the dorsal pathway predicts the future
response of the ventral pathway, rather than other way around.

Although these results suggest that the dorsal pathway prop-
agates object information to the ventral pathway, it is unclear
whether this effect reflects direct or indirect interactions. Indeed,
as mentioned previously, other research has found that feedback
to the ventral pathway may occur via frontal regions (Bar et al.
2006; Kar and DiCarlo 2021). Thus, the dorsal pathway may inter-
act with the ventral pathway by way of frontal cortex.

To test this possibility, we conducted partial correlation anal-
yses controlling for the influence of frontal channels. As in the
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previous analysis, each timepoint of the dorsal pathway was
correlated with each timepoint of the ventral pathway; however,
here, the multivariate response of frontal cortex for each dorsal
timepoint was included as a covariate. This analysis revealed
that, across participants, partial correlations were strongest when
the dorsal pathway was correlated with future timepoints of
the ventral pathway, even when controlling for the influence of
frontal cortex, t(19)=2.85, P=0.010, d =0.64.

For completeness, we also examined whether the dorsal path-
way predicted the ventral pathway, when, instead, we used the
multivariate response of occipital cortex as a covariate. This anal-
ysis again revealed that the dorsal pathway was correlated with
future timepoints of the ventral pathway, even when controlling
the influence of occipital cortex, t(19)=4.14, P <0.001, d=0.93.
Altogether, these findings are indicative of direct interactions
between dorsal and ventral pathways, with dorsal propagating
information to the ventral pathway, rather than the other way
around.

Finally, we examined whether there are direct functional con-
nections between occipital and frontal cortices with dorsal and
ventral pathways. We found that occipital cortex predicted the
response of the ventral pathway, t(19) =3.03, P=0.007, d =0.68, but
not the dorsal pathway (P=0.78). We did not find any significant
relations between frontal cortex with either dorsal or ventral
pathways (Ps > 0.226).

General discussion

In the current study, we examined the temporal dynamics and
interactions of the dorsal and ventral visual pathways. Although
an increasing number of studies have proposed that dorsal and
ventral pathways interact during the process of object recogni-
tion, few studies have examined the timing and directionality
of object processing in the two visual pathways. Using HD-EEG,
we found that the dorsal pathway represented identity-relevant
object information prior to the ventral pathway. Moreover, we
found that the dorsal pathway predicted the response of the
ventral pathway in a time-dependent manner. Altogether, these
findings suggest that identity-relevant object information in the
dorsal pathway arises independently of the ventral pathway and
may be a source of input to the ventral pathway for object
recognition.

However, a limitation of the current study is that EEG and the
study design affords only coarse anatomical specificity. Although
previous work has shown that HD-EEG can localise responses
to within 8 mm of their anatomical location (Im et al. 2007;
Koessler et al. 2009), the precise anatomical location of our chan-
nels of interest is not clear. Specifically, we used a standard
brain template to select channels that encompass PPC and LO.
Nevertheless, HD-EEG does have sufficient spatial resolution to
dissociate lobes of the brain (Ferree et al. 2001; Koessler et al. 2009;
Hedrich et al. 2017), allowing us to generally distinguish between
dorsal and ventral pathways. Indeed, PCA of the EEG channels
revealed that our anatomically selected dorsal and ventral chan-
nels were functionally distinct from each other, as well as from
other plausible neural sources (i.e. occipital and frontal cortex).
Furthermore, our decoding and connectivity results remained
consistent even when we controlled for signals from outside
the dorsal and ventral pathway. Finally, it is important to note
that the spatial limitations of HD-EEG should have attenuated
any timing differences between dorsal and ventral pathways, not
strengthened them. That we consistently found that the response
of the dorsal pathway preceded and predicted the ventral pathway
across a range of analyses, suggests that our results are based on
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Fig. 4. Time generalised representational similarity analyses. (A) Time generalisation matrix illustrating the correlation between RDMs for each dorsal
time point with each ventral time point. Correlations were stronger for dorsal — ventral correlations than ventral — dorsal correlations. Data are
plotted from the pre-stimulus to stimulus offset period (—50 to 300 ms). Dotted line indicates stimulus onset. (B) Top 1000 correlations, rank ordered
from highest to lowest for (red) dorsal — ventral correlations, (blue) ventral — dorsal correlations and (yellow) correlations along the time diagonal.

signals from distinct regions. Indeed, it is likely that our results
underestimate the true temporal asymmetries and interactions
between dorsal and ventral pathways. Nevertheless, future work
using intracranial recording with patients (Regev et al. 2018),
or concurrent scalp EEG and MRI recordings will be needed to
strengthen these conclusions.

Although there are relatively few studies that compare the tim-
ing of object processing in dorsal and ventral pathways, our timing
results are remarkably consistent with existing data. Specifically,
in our primary analyses we found decoding in the dorsal pathway
at 66 ms and in the ventral pathway at 94 ms. Similarly, electro-
corticographic data from patients showed visual onsets in IPS at
approximately 60 ms and at approximately 100 ms in LOC (Regev
et al. 2018). Other work from monkeys show comparable timing
in dorsal and ventral pathways, even when correcting for the dif-
ferences in conduction time between monkey and human brains
(Chen et al. 2006; Janssen et al. 2008). For instance, Janssen et al.
(2008) found shape selective processing in the dorsal pathway of
monkeys at 65 ms. Thus, although HD-EEG has relatively coarse
spatial resolution, the timing of dorsal and ventral pathway in our
study is consistent with studies using spatially precise techniques.

Why might category information arise earlier in the dorsal
pathway? One possibility is that earlier onsets in the dorsal

pathway reflect attentional processing. Attention is the process
of selecting a target stimulus over competing distractors. It is well
known that the dorsal pathway plays an important role in visual
attention (Corbetta and Shulman 2002; Behrmann et al. 2004), and
thus the close proximity to cortical regions subserving attentional
processing in the dorsal pathway may have provided the timing
advantage we observed. Although additional experiments are
needed to rule out this possibility definitively, on the basis of
prior work and our own results, we believe this explanation is
unlikely. First, classic electrophysiological studies in monkeys
and EEG studies in humans typically find that the effects of visual
attention occur after 100 ms, which is much later in time than the
decoding results we found here (Posner et al. 1973; Mehta et al.
2000; Schneider et al. 2012). Second, neurally, attention typically
results in univariate increases in the response to attended stimuli
(i.e. gain) and decreases to the unattended stimuli (Wojciulik
et al. 1998; McAdams and Maunsell 1999), as well as enhanced
SNR for the attended stimulus (Mitchell et al. 2009). Given that
SNR was matched in dorsal and ventral pathways in our data (and
marginally higher in the ventral pathway; see Methods), it is not
clear how an increased univariate response in the dorsal pathway
would lead to earlier multivariate decoding of object category.
In fact, univariate enhancement of identity-relevant properties in



the dorsal pathway would require that these particular properties
are already represented in the dorsal pathway. Relatedly, it is
unclear how attention might account for our findings that the
multivariate response of the dorsal pathway predicted the time-
varying responses of the ventral pathway.

A more probable explanation for the observed dorsal and ven-
tral timing results is that they reflect the differential input of
magnocellular and parvocellular pathways to dorsal and ventral
cortices, respectively (Laycock et al. 2007; Almeida et al. 2013). The
magnocellular pathway is able to rapidly transmit coarse object
information to the dorsal pathway via direct projections from sub-
cortical regions, which partially bypass occipital cortex (Felleman
and Van Essen 1991), whereas the parvocellular pathway trans-
mits higher resolution object information to the ventral pathway
by way of occipital cortex (Bar et al. 2006; Collins et al. 2019;
Wang et al. 2022). Consistent with these mechanisms, our results
suggest that identity-relevant information in the dorsal pathway
did not depend solely on input from occipital cortex. Specifically,
we found that decoding in the dorsal pathway occurred as early or
earlier than in occipital cortex, and that occipital cortex was not a
significant predictor of the dorsal pathway. In contrast, decoding
in occipital cortex preceded the ventral pathway and occipital
cortex was a significant predictor of the time-varying responses of
the ventral pathway. Importantly, TMS and fMRI studies suggest
that the coarse information transmitted by the magnocellular
pathway is sufficient to compute an object’s global shape struc-
ture (Wang et al. 2022), and that this information can support
decoding of object category in the dorsal pathway (Ayzenberg and
Behrmann 2022b). Furthermore, studies have shown that such
structural information may then be transmitted to the ventral
pathway to support object recognition (Bar et al. 2006; Kveraga
et al. 2007a; Ayzenberg and Behrmann 2022b). Thus, the ear-
lier decoding of object category in the dorsal pathway may be
explained by privileged magnocellular input.

Although our results are most consistent with the dorsal
pathway as a source of input to the ventral pathway, it is
almost certainly the case that there are bidirectional interactions
between the two pathways (Kravitz et al. 2011; Kravitz et al. 2013).
For instance, at later stages of processing, the ventral pathway
may provide semantic information about an object’s affordances
to the dorsal pathway to help coordinate actions (Almeida et al.
2013; Garcea and Mahon 2014; Chen et al. 2017). Moreover,
identity-relevant object information may be transmitted in a
recurrent manner between dorsal and ventral pathways as
needed to accomplish either object recognition or coordinate
motor actions. It is unlikely, however, that our results in the dorsal
pathway reflect differential action affordances for each category.
Specifically, decoding in the dorsal pathway preceded the ventral
pathway even when we removed categories with a high degree
of action affordance (i.e. tools). Moreover, the neural signals
for action planning (including saccade execution) are typically
found later in time than our decoding results here (e.g. > 100 ms;
Cui and Andersen 2011; Hamm et al. 2010; Handy et al. 2003).
Instead, our findings suggest that the dorsal pathway provides
an early source of input to the ventral pathway to support object
recognition. Future work should examine how the directionality
and dynamics of dorsal-ventral interactions change for different
tasks and anatomical stages.

There is also evidence that dorsal and ventral pathways are
situated within a broader network of regions that are involved in
object recognition (Kravitz et al. 2013). For instance, accumulating
evidence suggests that prefrontal cortex (PFC) is also a source
of feedback to the ventral pathway during object recognition
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(Bar et al. 2006; Kar and DiCarlo 2021). Specifically, coarse object
information arises in PFC via the dorsal pathway (Kveraga et al.
2007a) and this information is then used to constrain the possible
identity of the object (Kveraga et al. 2007b). Might dorsal and ven-
tral pathways interact indirectly via frontal cortex? Our results
suggest otherwise. Specifically, we found that the dorsal pathway
predicted the time-varying responses of the ventral pathway even
when controlling for frontal channels—a finding consistent with
research showing direct connectivity between dorsal and ventral
pathways (Webster et al. 1994; Takemura et al. 2016; Janssen et al.
2018). Moreover, and in contrast to prior work, we did not find
significant functional connectivity between frontal cortex with
either dorsal or ventral pathways. One explanation for this dis-
crepancy is thatinput from frontal cortex is needed in challenging
contexts when an object’s properties are difficult to see (Bar et al.
2006; Kar and DiCarlo 2021). However, the stimuli in the current
study were clearly visible and easy to identify.

The primary goal of our study was to explore the temporal
dynamics and interactions of dorsal and ventral pathways. Yet,
one might nevertheless wonder, what kind of information sup-
ports decoding of object category in the dorsal pathway? One pos-
sibility is that, in the current study, decoding was accomplished by
relying on low-level visual properties. This possibility is unlikely
because the stimuli were controlled for low-level properties like
luminance and spatial frequency (see Methods). Another possi-
bility is that very coarse object properties, such as elongation,
were sufficient to decode the objects’ categories. Indeed, anterior
regions of the parietal cortex are particularly sensitive to object
elongation because it facilitates grasping (Chen et al. 2017). This
possibility is also unlikely because all four categories contained
elongated objects and our decoding results did not differ when
tools, the category with the greatest number of elongated objects,
was removed.

Another possibility is that that the dorsal pathway accom-
plishes categorisation by computing an object’s structural
description and then transmitting this information to the ventral
pathway for recognition (Romei et al. 2011; Zaretskaya et al. 2013;
Zachariou et al. 2017). Structural descriptions are a representation
of “global shape,” which describe the spatial relations between an
object’s parts, without describing the appearance of the parts
themselves (Biederman 1987; Hummel 2000; Barenholtz and
Tarr 2006). Structural descriptions are crucial for basic-level
categorisation because exemplars within a category share the
same structure while varying in their individual features (Tarr
and Bulthoff 1995; Rosch et al. 2004; Ayzenberg and Lourenco
2019; Ayzenberg and Lourenco 2022). The dorsal pathway may be
ideally suited to compute such a representation, given its well-
known role in computing spatial relations more generally. Indeed,
recent studies have found that regions in PPC were functionally
selective for an object’s structure, independent of other properties
represented by the dorsal pathway, such as tools (Ayzenberg and
Behrmann 2022b). These PPC regions were capable of decoding
an object’s category and mediated representations of structure
in the ventral pathway (Ayzenberg et al. 2022). As mentioned
previously, such structural information is readily transmitted
via magnocellular input, providing a mechanism by which the
dorsal pathway rapidly gains access to identity-relevant object
information (Wang et al. 2022). Thus, not only might the dorsal
pathway compute the spatial relations between objects to support
action, but it may also compute the relations between object
parts so as to form more complete representations of shape, in
conjunction with the ventral pathway (Ayzenberg and Behrmann
2022a).
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In summary, our results expand our understanding of the inter-
actions between dorsal and ventral visual pathways. Although it
is increasingly accepted that the two visual pathways interact,
the precise nature of these interactions remain poorly under-
stood. Here, we showed that identity-relevant object processing
in the dorsal pathway precedes and predicts processing in the
ventral pathway. Together, these findings provide an expanded
understanding of the biological network that support visual object
recognition.
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